Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings

نویسندگان

  • Gang Li
  • Hao Hu
چکیده

Risk design optimization (RDO) is a competent approach for automated performance-based structural design by achieving a balance between safety and economy. Performance-based wind engineering (PBWE) is aimed at improving the life-cycle functionality of wind-sensitive structures, hence could be the very field RDO is tailor-made for. In this paper, we embed PBWE of tall buildings into RDO and tackle some difficulties when integrating them directly. We first formulate an integrated stiffness and vibration control RDO problem, and employ a frequency domain closed-form solution for uncertainty quantification and uncertainty propagation through the excitation–response–performance chain. Then we reveal the multi-objective optimization nature of RDO, and circumvent the difficulties in serviceability loss estimation by replacing scalar total cost with high-dimensional objective vector. Micro multi-objective particle swarm optimization in conjunction with kernel-learning based principle component analysis is employed to solve the corresponding many-objective problem with multiple probabilistic constraints and discrete design variables. The optimization results of CAARC benchmark indicate that we simplify risk-based PBWE of tall buildings from a complex multi-objective decision making process into a relatively easy multi-attribute decision making process. Accordingly, convincing decisions can be made based on the explicit building performance rather than the unreliable loss information. 2014 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL WIND RESISTANT DESIGN OF TALL BUILDINGS UTILIZING MINE BLAST ALGORITHM

Practical design of tall frame-tube and diagrids are formulated as two discrete optimization problems searching for minimal weight undercodified constraints under gravitational and wind loading due to Iranian codes of practice for steel structures (Part 6 & Part 10). Particular encoding of design vector is proposed to efficiently handle both problems leading to minimal search space. Two types o...

متن کامل

Multiobjective Evolutionary Design of Steel Structures in Tall Buildings

This paper presents initial results of a study on the application of evolutionary multiobjective optimization methods in the design of the steel structural systems of tall buildings. In the paper, a brief overview of the state-of-the-art in evolutionary multi-objective optimization in structural engineering is provided. Next, conceptual design of steel structural systems in tall buildings is ov...

متن کامل

Design Optimization for Total Volume Reduction of Permanent Magnet Synchronous Generators

Permanent magnet synchronous generators (PMSGs) are novel generators which can be used in high-performance wind farms. High efficiency and flexibility in producing electricity from variable rotation make them good candidate for wind power applications. Furthermore, because these kinds of generators have no excitation winding, there is no copper loss on rotor; hence, they can operate at high pow...

متن کامل

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...

متن کامل

Wind Turbine Transformer Optimum Design Assuming a 3D Wound Core

A wind turbine transformer (WTT) is designed using a 3D wound core while the transformer’s total owning cost (TOC) and its inrush current performance realized as the two objective functions in a multi-objective optimization process. Multi-objective genetic algorithm is utilized to derive Pareto optimal solutions. The effects of inrush current improvement on other operating and design parameters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014